SEMI-ANNUAL REPORT FOR INDUSTRIAL USERS REGULATED BY 40 CFR 433

Use of this form is not an EPA/ADEQ requirement. 40 day compliance report - compliant (1) IDENTIFYING INFORMATION A. LEGAL NAME & MAILING ADDRÈSS **B. FACILITY & LOCATION ADDRESS** Bod Boy INC (#2) 1 Bad Boy Blud Butesulle AR 72501 102 Industrial DR. Batesville AR 72501 MP05# AR 002070Z ARD-001028 TELEPHONE NUMBER: 870 6/2 0350 e-mail: C. FACILITY CONTACT: Pandel. davis 6 badboy moures. (2) REPORTING PERIOD-FISCAL YEAR From to (Both Semi-Annual Reports must cover Fiscal Year) A. MONTHS WHICH REPORTS ARE DUE B, PERIOD COVERED BY THIS REPORT December FROM: January TO: June (3) DESCRIPTION OF OPERATION A. REGULATED PROCESSES **B. CHANGES:** SUMMARIZE ANY CHANGES IN THE REGULATED PROCESSES SINCE THE LAST REPORT. ATTACH AN ADDITIONAL SHEET IF THE SPACE BELOW IS INADEQUATE. PROVIDE A NEW SCHEMATIC IF APPROPRIATE. **CORE PROCESS(ES)** CHECK EACH APPLICABLE BLOCK **G** Electroplating **G** Electroless Plating **G** Anodizing (C)Coating G Chemical Etching and Milling **G** Printed Circuit Board Manufacture ANCILLARY PROCESS(ES)* LIST BELOW EACH PROCESS USED IN THE FACILITY SEE 40CFR433.10(a) FOR THE 40 ANCILLARY OPERATIONS C. Number of Regular Employees at this Facility D. |Reserved|

(4) FLOW MEASUREMENT

INDIVIDUAL & TOTAL PROCESS FLOWS DISCHARGED TO POTW IN GALLONS PER DAY

Process	Average	Maximum	Type of Discharge
Regulated (Core &	5040	10080	
Regulated (Cyanide)			
'403.6(e) Unregulated*			
' 403.6(e) Dilute			
Cooling Water			
Sanitary	4500	9000	
Total Flow to POTW	9540	19080	

[&]quot;'Unregulated" has a precise legal meaning; see 40CFR403.6(e).

(5)	MEA	SUREMENT	OF POLI	TITANTO
131	VILA	POST BE BUILDING I	OF PULL	ALL AND IS

A. TYPE OF TREATMENT SYSTEM

CHECK EACH APPLICABLE BLOCK

- **G** Neutralization
- **G** Chemical Precipitation and Sedimentation
- **G** Chromium Reduction
- G Cyanide Destruction
- G Other
- (3 None

stages 1.3.5 Captured and picked of By wasted serious ING.

C. THE INDUSTRIAL USER MUST PERFORM SAMPLING AND ANALYSIS OF THE EFFLUENT FROM ALL REGULATED PROCESSES—CORE & ANCILLARY—(AFTER TREATMENT, IF APPLICABLE). ATTACH THE LAB ANALYSIS WHICH SHOWS A MAXIMUM; TABULATE ALL THE ANALYTICAL DATA COLLECTED DURING THE REPORT PERIOD IN THE SPACE PROVIDED BELOW. ZERO CONCENTRATIONS ARE NOT ACCEPTABLE; LIST THE DETECTION LIMIT IF CONCENTRATION WAS BELOW DETECTION LIMIT.

Pollutant(mg/l) limits	Cd	Cr	Cu	Pb	Ni	Ag	Zn	CN	TTO*
Max for 1 day	0.11	2.77	3.38	0.69	3.98	0.43	2.61	1.20	2.13
Monthly Avg	0.07	1.71	2.07	0.43	2.38	0.24	1.48	0.65	
Max Measured	K.001	, Careto	1004	100	1005	,006	<,001	2.01	BBL
Avg Measured**		(1001		.002					*

Sample Location Scample Att out stde Bulding End of Process
Sample Type (Grab or Composite) GRab

Number of Samples and Frequency Collected_____

40CFR136 Preservation and Analytical Methods Use: G Yes G No (include complete Chain of Custody)

*If a TOMP has been submitted and approved by ADEQ place N/A.

**A value here can only be the average of all samples taken during one (1) calendar month.

TIFICATION		
Reserved		
	[Reserved]	
CHECK ONE: G '433.11	(e) TOXIC ORGANIC ANALYSIS ATTACHED G '433.12(a) TTO	CERTIFICAT
pretreatment stands dumping of concent compliance report.	of the person or persons directly responsible for managing compliant or defect or	vledge and belie he last semi-ann
pretreatment standa dumping of concent compliance report.	ard for total toxic organics (TTO), I certify that, to the best of my known rated toxic organics into the wastewaters has occurred since filing of the	vledge and belie he last semi-ann
pretreatment standa dumping of concent compliance report.	ard for total toxic organics (TTO), I certify that, to the best of my known rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic manages as Department of Environmental Quality.	vledge and belie he last semi-ann
pretreatment standa dumping of concent compliance report.	ard for total toxic organics (TTO), I certify that, to the best of my know rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic mais as Department of Environmental Quality. (Typed/Printed Name)	vledge and belie he last semi-ann
pretreatment stands dumping of concent compliance report. submitted to Arkans	and for total toxic organics (TTO), I certify that, to the best of my know rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic mais as Department of Environmental Quality. (Typed/Printed Name) (Corporate Officer or authorized representative signature) Date of Signature	vledge and belie he last semi-ann
pretreatment stands dumping of concent compliance report. submitted to Arkans	and for total toxic organics (TTO), I certify that, to the best of my know rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic mais as Department of Environmental Quality. (Typed/Printed Name) (Corporate Officer or authorized representative signature) Date of Signature	vledge and belie he last semi-ann
pretreatment stands dumping of concent compliance report. submitted to Arkans ATE ACKNOWLEDGE STATE OF ARKAN COUNTY OF Before me, the unde	ard for total toxic organics (TTO), I certify that, to the best of my know rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic mais as Department of Environmental Quality. (Typed/Printed Name) (Corporate Officer or authorized representative signature) Date of Signature CMENT (Optional) (SAS) rsigned authority, on this day personally appeared	vledge and belie he last semi-ann nagement plan
pretreatment stands dumping of concent compliance report. submitted to Arkans ATE ACKNOWLEDGE STATE OF ARKAN COUNTY OF Before me, the under a corporation, know acknowledged to me	ard for total toxic organics (TTO), I certify that, to the best of my know rated toxic organics into the wastewaters has occurred since filing of the I further certify that this facility is implementing the toxic organic mais as Department of Environmental Quality. (Typed/Printed Name) (Corporate Officer or authorized representative signature) Date of Signature CMENT (Optional)	vledge and belie he last semi-ann nagement plan

County, Arkansas

My commission expires ______.

(7) POLLUTION PREVENTION ACT OF 1990 [42 U.S.C. 13101 et seq.]
'6602 [42 U.S.C. 13101] Findings and Policy para (b) PolicyThe Congress hereby declares it to be the national policy of the United States that pollution should be prevented or reduced at the source whenever feasible; pollution that cannot be prevented should be treated in an environmentally safe manner, whenever feasible; pollution that cannot be prevented or recycled should be treated in an environmentally safe manner whenever feasible; and disposal or other release into the environment should be employed only as a last resort and should be conducted in an environmentally safe manner.
The User may list any new or ongoing Pollution Prevention practices:
\
NA
(8) GENERAL COMMENTS
 (9) SIGNATORY REQUIREMENTS [40CFR403.12(I)]
I certify under penalty of law that I have personally examined and am familiar with the information in this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Randel Davis NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE Randel Davis SIGNATURE
Paint superuisor
OFFICIAL TITLE DATE SIGNED

NPDES Wastewater Monitoring
Water and Wastewater Analysis
Concrete, Asphalt, and Aggregate Testing
Geotechnical Testing
Industrial and Construction Quality Control

BAD BOY MOWERS

Collection Date / Time: March 8, 2013

11:15 AM

Wastewater Analysis

Collection Place: MTV Plant
Collected By: BET / RANDEL DAVIS

Parameter		e / Time Begin		/ Time Ind	Results	Unit	Ldg (lbs/dy)	Analyst	% Spike	Rel %	Sample Type	Ref #
Cadmium	03/14	12:36 PM	03/14	12:40 PM	< 0.001	mg/l	NA	KLB	98.1	0.76	Comp	1
Chromium	03/14	12:36 PM	03/14	12:40 PM	< 0.001	mg/l	NA	KLB	99.7	0.25	Comp	1
Copper	03/14	12:36 PM	03/14	12:40 PM	0.004	mg/l	NA	KLB	97.0	0.25	Comp	1
Lead	03/14	12:36 PM	03/14	12:40 PM	0.002	mg/l	NA	KLB	100.5	0.55	Comp	1
Nickel	03/14	12:36 PM	03/14	12:40 PM	0.005	mg/l	NA	KLB	97.2	0.42	Comp	1
Silver	03/14	12:36 PM	03/14	12:40 PM	0.006	mg/l	NA	KLB	100.5	1.29	Comp	1
Zinc	03/14	12:36 PM	03/14	12:40 PM	< 0.001	mg/l	NA	KLB	103.1	0.81	Comp	1
Total Toxic Organics	03/14	12:07 PM	03/14	9:20 PM	BDL*	ug/l	NA	Al301			CALC	2
	*BDL = BELOW DETECTABLE LIMITS											
рН	03/08	11:15 AM		NA	7.30	S.U.	NA	BET	NA	0.26	GRAB	3
Cyanide, Total	03/15	9:30 AM		NA	< 0.01	mg/l	NA	KLB	94.6	0.00	GRAB	4

Quality Assurance: All Parameters include 10% duplication studies by random selection. The following equipment is checked and calibrated daily: pH meter, balance, incubators, water baths, drying oven and sterilizing apparatus. Ammonia Nitrogen and Oil & Grease Analysis include duplication and spike studies at a rate of at least 10%.

Notes: Samples iced at collection. Preserved with $\rm H_2SO_4$ to $\rm pH_2$: Oil & Grease, Ammonia, COD

References:

Analysis complies with 40 CFR Part 136:

- 1. SM 3111B
- 2. See attached American Interplex Report 165660
- 3. SM 4500 HB
- 4. SM 4500-CN-E

Neville Adams, Manager

March 18, 2013 Control No. 165660 Page 1 of 30

Arkansas Testing Laboratories ATTN: Ms. Lorrie Barbee 3301 Langley Drive Searcy, AR 72143

This report contains the analytical results and supporting information for samples submitted on March 13, 2013. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

Steve Bradford

Deputy Laboratory Director

This document has been distributed to the following:

PDF cc: Arkansas Testing Laboratories

ATTN: Ms. Lorrie Barbee arkatl@sbcglobal.net

March 18, 2013 Control No. 165660 Page 2 of 30

SAMPLE INFORMATION

Project Description:

Two (2) water sample(s) received on March 13, 2013 2256

P.O. No. 2256

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest #1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
165660-1	Mower 3-8-13 1100am	08-Mar-2013 1100	
165660-2	MTV 3-8-13 1115am	08-Mar-2013 1115	

Qualifiers:

- D Result is from a secondary dilution factor
- Q Analyte is not within quality control limits
- R n-Nitrosodiphenylamine cannot be separated from diphenylamine

Case Narrative:

Low recovery for the Base/Neutral and Acid Surrogate, 2.4.6-Tribromophenol, is due to matrix interference.

References:

"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

[&]quot;Standard Methods for the Examination of Water and Wastewaters", 21st edition.

[&]quot;American Society for Testing and Materials" (ASTM).

[&]quot;Association of Analytical Chemists" (AOAC).

March 18, 2013 Control No. 165660 Page 10 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	<u>RL</u>	Units	Qualifier
Base/Neutral and Acid C Butylbenzyl phthalate EPA 625	Compounds By EPA 625 (Prep: 14-Mar-2013 1207 by 306	< 5.0	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2-Chloronaphthalene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2-Chlorophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
4-Chlorophenyl phenyl e EPA 625	ther Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Chrysene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Di-n-butyl phthalate EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Di-n-octyl phthalate EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Dibenz(a,h)anthracene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
3,3'-Dichlorobenzidine EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2,4-Dichlorophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Diethyl phthalate EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Dimethyl phthalate EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2,4-Dimethylphenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
4,6-Dinitro-o-cresol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2,4-Dinitrophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2,4-Dinitrotoluene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
2,6-Dinitrotoluene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
1,2-Diphenylhydrazine EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Fluoranthene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	
Fluorene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Ma	5.0 ar-2013 2120 by 301	ug/l Batch: B8222	

March 18, 2013 Control No. 165660 Page 11 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	RL	Units	Qualifier
Base/Neutral and Acid Co	ompounds By EPA 625 (Continued)			
Hexachlorobenzene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Hexachlorobutadiene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Hexachlorocyclopentadie EPA 625	ne Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Hexachloroethane EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Indeno(1,2,3-cd)pyrene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Isophorone EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
n-Nitrosodi-n-propylamine EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
n-Nitrosodimethylamine EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
n-Nitrosodiphenylamine EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	R
Naphthalene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Nitrobenzene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
2-Nitrophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
4-Nitrophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
p-Chloro-m-cresol EPA 625	Prep; 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Pentachlorophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Phenanthrene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Phenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
Pyrene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
1,2,4-Trichlorobenzene EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	
2,4,6-Trichlorophenol EPA 625	Prep: 14-Mar-2013 1207 by 306	< 5.0 Analyzed: 14-Mar	5.0 -2013 2120 by 301	ug/l Batch: B8222	

March 18, 2013 Control No. 165660 Page 12 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	RL	Units	Qualifier
Base/Neutral and Acid Co Surrogate: 2-Fluorobiphenyl EPA 625		69.2	r-2013 2120 by 301	% Batch: B8222	
Surrogate: 2-Fluorophenol (EPA 625	20.0-110%) Prep: 14-Mar-2013 1207 by 306	34.8 Analyzed: 14-Mai	r-2013 2120 by 301	% Batch: B8222	
Surrogate: Nitrobenzene-D5 EPA 625	5 (40.0-110%) Prep: 14-Mar-2013 1207 by 306	65.8 Analyzed: 14-Mai	r-2013 2120 by 301	% Batch: B8222	
Surrogate: Terphenyl-D14 (9 EPA 625	50.0-135%) Prep: 14-Mar-2013 1207 by 306	83.8 Analyzed: 14-Mai	r-2013 2120 by 301	% Batch: B8222	
Surrogate: 2,4,6-Tribromoph EPA 625	nenol (40.0-125%) Prep: 14-Mar-2013 1207 by 306	32.5 Analyzed: 14-Mai	r-2013 2120 by 301	% Batch: B8222	Q
/olatile Organic Compou	nds By EPA 624				
Acrolein EPA 624	Prep: 14-Mar-2013 1136 by 301	< 25 Analyzed: 14-Mai	25 r-2013 1751 by 301	ug/l Batch: V8224	
Acrylonitrile EPA 624	Prep: 14-Mar-2013 1136 by 301	< 25 Analyzed: 14-Ma	25 r-2013 1751 by 301	ug/l Batch: V8224	
Benzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mai	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
Bromoform EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mai	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
Carbon tetrachloride EPA 624	Prep: 14-Mar-2013 1136 by 301	< 2.0 Analyzed: 14-Mai	2.0 r-2013 1751 by 301	ug/l Batch: V8224	
Chlorobenzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mai	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
Chlorodibromomethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
Chloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
2-Chloroethyl vinyl ether EPA 624	Prep: 14-Mar-2013 1136 by 301	< 10 Analyzed: 14-Mar	10 r-2013 1751 by 301	ug/l Batch: V8224	
Chloroform EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
1,2-Dichlorobenzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mai	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
1,3-Dichlorobenzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
1,4-Dichlorobenzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	
Dichlorobromomethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Ma	5.0 r-2013 1751 by 301	ug/l Batch: V8224	

March 18, 2013 Control No. 165660 Page 13 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	RL	Units	Qualifier
Volatile Organic Compou	nds By EPA 624 (Contin	ued)			
1,1-Dichloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
1,2-Dichloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
1,1-Dichloroethylene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
trans-1,2-Dichloroethylene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
1,2-Dichloropropane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
cis-1,3-Dichloropropylene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
trans-1,3-Dichloropropyler EPA 624	1e Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Ethylbenzene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Methyl bromide(Bromome EPA 624	thane) Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Methyl chloride(Chlorome EPA 624	thane) Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Methylene chloride EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
1,1,2,2-Tetrachloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Tetrachloroethylene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Toluene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
1,1,1-Trichloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-26	5.0 013 1751 by 301	ug/l Batch: V8224	
1,1,2-Trichloroethane EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-26	5.0 013 1751 by 301	ug/l Batch: V8224	
Trichloroethylene EPA 624	Prep: 14-Mar-2013 1136 by 301	< 5.0 Analyzed: 14-Mar-20	5.0 013 1751 by 301	ug/l Batch: V8224	
Vinyl chloride EPA 624	Prep: 14-Mar-2013 1136 by 301	< 2.0 Analyzed: 14-Mar-20	2.0 013 1751 by 301	ug/l Batch: V8224	
Surrogate: 4-Bromofluorobe EPA 624	nzene (75.0-120%) Prep: 14-Mar-2013 1136 by 301	94.4 Analyzed: 14-Mar-20	013 1751 by 301	% Batch: V8224	
Surrogate: Dibromofluorome EPA 624	ethane (85.0-115%) Prep: 14-Mar-2013 1136 by 301	93.3 Analyzed: 14-Mar-20	013 1751 by 301	% Batch: V8224	

March 18, 2013 Control No. 165660 Page 14 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	RL	Units	Qualifier				
Volatile Organic Compounds By EPA 624 (Continued)									
Surrogate: Toluene-D8 (85. EPA 624	0-120%) Prep: 14-Mar-2013 1136 by 301	101	2012 1751 by 201	% Batch: V8224					
	, , , , , , , , , , , , , , , , , , , ,								
Organochlorine Pesticide	es and PCBs By EPA 608	< 0.010	0.010						
EPA 608	Prep: 14-Mar-2013 1450 by 306	Analyzed: 15-Mar-2		ug/l Batch: G9214					
alpha-BHC EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
alpha-Endosulfan EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.010 Analyzed: 15-Mar-2	0.010 2013 1548 by 306	ug/l Batch: G9214					
beta-BHC EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
beta-Endosulfan EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Chlordane EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.10 Analyzed: 15-Mar-2	0.10 2013 1548 by 306	ug/l Batch: G9214					
Chlorpyrifos EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.050 Analyzed: 15-Mar-2	0.050 2013 1548 by 306	ug/l Batch: G9214					
4,4'-DDD EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
4,4'-DDE EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
4,4'-DDT EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
delta-BHC EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Dieldrin EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Endosulfan sulfate EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Endrin EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Endrin aldehyde EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
gamma-BHC EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.020 Analyzed: 15-Mar-2	0.020 2013 1548 by 306	ug/l Batch: G9214					
Heptachlor EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.010 Analyzed: 15-Mar-2	0.010 2013 1548 by 306	ug/l Batch: G9214					
Heptachlor epoxide EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.010 Analyzed: 15-Mar-2	0.010 2013 1548 by 306	ug/l Batch: G9214					

March 18, 2013 Control No. 165660 Page 15 of 30

ANALYTICAL RESULTS

AIC No. 165660-2 (Continued)

Analyte		Result	RL	Units	Qualifier
Organochlorine Per PCB 1016	sticides and PCBs By EPA 608	< 0.20	0.20	ug/l	
EPA 608	Prep: 14-Mar-2013 1450 by 306	Analyzed: 15-M	1ar-2013 1548 by 306	Batch: G9214	
PCB 1221 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
PCB 1232 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
PCB 1242 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
PCB 1248 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
PCB 1254 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
PCB 1260 EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
Toxaphene EPA 608	Prep: 14-Mar-2013 1450 by 306	< 0.20 Analyzed: 15-M	0.20 1ar-2013 1548 by 306	ug/l Batch: G9214	
Surrogate: Decachlo EPA 608	robiphenyl (30.0-135%) Prep: 14-Mar-2013 1450 by 306	91.6 Analyzed: 15-M	far-2013 1548 by 306	% Batch: G9214	
Surrogate: Tetrachlo EPA 608	ro-m-xylene (25.0-140%) Prep: 14-Mar-2013 1450 by 306	126 Analyzed: 15-M	1ar-2013 1548 by 306	% Batch: G9214	

Arkansas Testing Laboratories 3301 Langley Drive Searcy, AR 72143 Off 501-268-6431

- *NPDES Wastewater Monitoring
- *Water and Wastewater Analysis
- *Concrete, Asphalt, and Aggregate Testing
- *Geotechnical Testing
- *Industrial and Construction Quality Control

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

CLIENT:	Ba	d B	DOY V	Mou	2/5	Bat	pollo	AL					PARAN	METERS		
SAMPLE ID EFF	SAMPLE MATRIX	SAMPLED BY	BBT	1	Zardal	þ				Calibration pH / DO #	<u> </u>	(494		PRESER	VATIVES A DOH	1(5
INF CLAR POND BACKWASH	W=H20 S=SLUDGE D=SOIL C=WELL	DATE	TIME	Flow	Grab					pH Heq				notels	(N-	TTO
mower Dlad	W	×38-13	×11'1XV+	-						7.21				100 mL	1-6-1	1-
mry plut ett	ω		11:15-							7.30				100 mL	1-6-1	
		,		VIII 1878 77500	-						-					
				-												
																,
													10+ (-)			
# = number of bottles Q, L, H = Quart, Li					The state of the s				Plastic, Glass							
Relinquished by:					Date/Time Received				Received by	ceived by:				Date/Time		
Relinquished by:				Date/Time Received t				Received by	Stemplena				Date/Time 5:00 m			

Arkansas Testing Laboratories Samely, AR 72145 Off 501-2888-8431

***NPDES Wastewater Monitoring** "Water and Wasteweter Analysis *Concrete, Asphalt, and Aggregate Testing *Geotechnical Testing *Industrial and Construction Quality Control

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

165660

CLIENT:	ARKANS	SAS TES	STING L	AB	PO# REF#	7 223	56	PARAMETERS			
EFF INF CLAR	SAMPLE MATRIX	SAMPLE	D BY:	BET				Feed.	PRESERVATIN	ÆS	
	W#H20 S=SLUDG D=SOIL	DATE	Time	Grab				(TTO (Smi-V	(voi)		
Nuwer	W	3-8-13	11 am	X				1-4-6	2-40-6	-	
MTV	W	3-8-13	11'am	<i>x</i>				1-L-G	2-40-6		
										·	
= numbe	r of bottle	s	Q, L, H :	= Quart, Liter, Half (Sallon I	P, G = Plastic					
Relinquished by:			Date/Time		Receive	id by:	Date/Time				
Refinquished by: (+tv UP)				ارم) Data/Time 3-12-13	90gm	Receive Ska	or lu lone	Date/Time 3.(3.13 /03.0			